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Abstract

The authors, as part of their work in human
centered motion cueing algorithms, conducted research
in the area of mathematical modeling of the otolith
organs, the sensors of specific force. The purpose of
this study was to develop a model that is consistent with
both experimental and theoretical analyses that can be
readily implemented into a motion cueing agorithm.

The authors reviewed several existing models that
characterize the specific force response dynamics.
Experimental research on the ocular torsion response of
human subjectsTbsulted in a second-order model with
afirst-order lead component, with a short time constant
of 0.66 seconds. From this model and physiological
knowledge, a first-order lead-lag, model of the otolith
afferent dynamics was estimated”. A second-order
lumped parameter model for the otolith displacement
a function of the specific force stimulus was deriv
revedling a short time constant of 0.0002 seconds.
Physiological experiments measuring the afferent
responsetdesulted in an otolith mechanics time constant
of 0.016 seconds. Based upon these results found in the
literature, the authors synthesized a new otolith model.

The physiological experiments also resulted in
models for both regular and irregular units containing a
fractional exponent term in the transfer function. The
authors derived time responses for these models using
fractional calculus with a series approximation. The
responses from these models are compared to the
response obtained from the proposed model. This
comparison illustrates that the proposed model is a
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reasonable approximation
physiological models.

to the more complex

Introduction

The otolith organs are located in the inner ear and
provide linear motion sensation in humans and
mammals. These organs are responsive to specific
force, the gravitoinertia reaction force per unit mass,
which is defined to be § =g —a,here q isthe

local gravitational force vector, and @ is the

acceleration of the head with respect to a body-fixed
reference frame. Therefore, the otoliths respond to both
linear acceleration of the head and tilting of the head
with respect to the gravity vector. However, the
otoliths cannot discriminate between acceleration and
tilt, requiring additional sensory information to resolve
this ambiguity. There are two otolith organs, the utricle
and saccule, in each inner ear. The utricle primarily
senses motion in the longitudinal and lateral planes,
while the saccule primarily senses motion in the vertical
plane.

shown in F| gure 1. The otollth reference frameis flxed
to the head; thus motion in this frame is relative to the
head. The x-z plane of the otolith reference frasne is
tilted upward from the x-axis by about 20 degrees.” The
utricle is oriented along the x-axis and the saccule is
oriented along the z-axis in the otolith reference frame.

Figure 1. Orientation of the Otolith Organs and Body-
Fixed Reference Frame.
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Physiological Description of the Otoliths

The otolith organs consist of a two-layer structure
known as the otolithic membrane that is attached to a
base containing sensory cells. The otolithic membrane
is composed of an upper layer, the otoconia layer, and
a lower layer, the gelatinous layer. A fluid known as
endolymph is in contact with the upper surface of the
otoconial layer. The otoconial layer consists of calcium
carbonate crystals embedded in a gelatinous material
that rests on a less dense and extremely deformable
gelatinous layer. This gelatinous layer is in turn
attached to the sensory cell base known as the macula
that isincorporated into the membranous tissue walls of
the inner ear. The macula is rigidly attached to the
skull and therefore moves with the head.

There are two types of sensory cells located in the
macula. The Type | cells are enclosed in a nerve
chalice and are innervated by nerve fibers with a large
diameter. The Type Il cells are cylindrical and are
innervated by fibers with a small diameter. Fernandez
and Goldberg” Teport that cells in the outer (peripheral)
otolith region are primarily Type Il cellsand cellsin the
centra (striolar) region are primarily Type | cells. Both
types of cells have a series of small hairs that penetrate
the lower portion of the gelatinous layer. Each hair cell
has about 70 stereocilia and one kinocilium with the
stereocilia graded in length toward the kinocilium.

The resulting displacement of the otolithic
membrane due to forward linear acceleration is
illustrated in Figure 2. The arrows in the figure show
the direction of the specific force acting upon the head.
With a forward acceleration or backward tilting of the
head the denser otoliths tend to lag behind the macula,
with the relative motion resulting in deforming the
gelatinous and otoconial layers in shear. When the
shear deformation is in the direction of the kinocilium,
the cell will be excited, whereas when the deformation
is in the opposite direction, the cell will be inhibited.
The directions of the maximum excitation and
inhibition of a hair cell are defined by its polarization
axis. In each macula, the striola separates oppositely
polarized regions. For each position due to
translational movement, some cells will be maximally
excited, while others will be maximally inhibited.
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Figure 2. Displacement of ﬁe Otolithic Membrane due
to a Forward Acceleration®.

The axes of maximum and minimum response of a
given afferent neuron are defined by the corresponding
polarization axis of the hair cells that it innervates. The
linear polarization of an afferent neuron strongly
suggests that the hair cells that the neuron innervates
have polarization axes that are oriented in the same
direction.>The response of a neuron is the afferent
firing rate (AFR), measured in impulses per second
(IPS).

Fernandez and Goldbe%]6 identified two types of
neurons that are characterized by their variance or
regularity of discharge, hereafter referred to as regular
and irregular units. From a sample population of units,
they identified a ratio of regular to irregular units to be
approximately three to one.

Physiologically Based M odels of Perceived Response
Zacharialg reported that Meiry (1965) first
investigated subjective responses to linear motion by
using a cart to produce longitudinal sinusoidal motion.
By measuring the subjective indication of direction, he
obtained a transfer function relating perceived velocity
vV to actual velocity v:

(s) _ Kz,s
v(s) (ms+1)(rs+1)

@

Where the long time constant 7; and short time constant
T, are 10 and 0.66 seconds respectively, and the gain K
is undetermined since amplitude measurements were
not taken. Zacharias'lthen noted that Peters suggested
the subjective response measured by Meiry was
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perceived acceleration and not perceived velocity, since
in response to an acceleration step the model predicted
a perceived response that decays to zero with a time
constant of 10 seconds.

Young and Meirl);sl noted that the model proposed
by Meiry correctly predicted the phase of perceived
velocity for lateral oscillation and time to detect motion
under constant acceleration, but failed to predict the
otoliths' response to sustained tilt angle as indicated by
behavioral and physiological data. They noted that the
model agreed with dynamic counter-rolling data (of the
eye) at high frequencies, but experimental counter-
rolling at zero frequency showed a static component of
otolith output with no phase lag (the model assumed no
static output and at zero frequency approached 90
degrees of lead). They proposed the following revised
model of specific force sensation:

f(s)
f(s)

which, when rearranged in terms of the time constants,
yields

_ 15(s+0.076) @
" (s+0.19)(s +15)

_ 04(13.2s+1) @
(5.33s+1)(0.66s +1)

f(s)
t(s)

With asmaller long time constant (5.33 seconds) and an
additional lead term, they modeled both perceived tilt
and acceleration in response to acceleration input.
They noted that the model acts as a velocity transducer
over the frequency range of 0.19 to 1.5 rad/s, with the
transfer function from specific force to perceived tilt or
lateral acceleration having a static sensitivity of 0.4.

Analytical M odel of Otolith Dynamics

Zacharias’ Aoted that a mass-spring-dashpot model
of otolith motion could be used to represent the two lag
time constants, similar to the torsion-pendulum model
for the semicircular canals. éﬁ)\% developed
this model, and Grant, Best, et refined the
model as part of their theoretica anaysis of the

otolithic membrane. A lumped parameter model is
constructed by considering the forces on the otoconial

-b&- k¢ +myg, +my (a, —g,) =ma; (4

where

Mass of the displaced otoconial layer

Mass of the displaced fluid (endolymph)
Component of the gravity vector

Viscous damping on the otoconial layer
Stiffness of the gelatinous layer

Displacement of the otoconial layer with respect
to the head

" Acceleration of the head with respect to a body-
fixed reference frame

Acceleration of the otoconial membrane with
respect to a body frame

XWU@;?

Q
1

&
I

The force term of my (ax - gy) is the buoyant force
of the endolymph acting op the otoconia layer, which
was neglected by Ormsby? In his analysis.

By conservation of volume, the mass of the
displaced fluid can be expressed as my, = (pe/,oo) m,,

where g, is the density of the endolymph and p, is the
density of the otoconial membrane. Substituting this

term into Egn. (4), and noting that a; = a, + &, results

(1 —&](gx -a)

Po

n

b k
et — R+ —X =
LU

Note that the stimulus term g, — &, is the specific
force component f,. Theterm (1- p,/p,) establishes

the system sensitivity or gain to the stimulus terms. For

Po Oreater than p., a positive gx or a negative a, will

produce a positive displacement of the otoconial layer.

Eqgn. (5) can then be written in transfer function form as
_ P ) 1

{9 po)[SZ +Bs+Kj

m, m,
As observed by Y oung and Meiryé,:tlhe system response
is overdamped. For an overdamped system, Eqgn. (6)
can be rewritten in terms of the long and short time
constants as

layer. The differential equation for this model in thef<-

direction (in the otolith reference frame) is given
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X(S) _( b \ 1,7, 0 Estimated M odel of Afferent Dynamics
- O

f(s) Po )(1+ 5,5)(1+17,8) Ormsby? neglected the short time constant 7 in

Eqgn. (7) and after rearranging terms, approximated the

where for the otoliths, 7, ? 7,, and therefore the two  otolith mechanical dynamics by
time constants can be related to the lumped parameters
asr,=my/k and 7,=m,/b. X9 __A

f(s) s+A

In determining the vElfe of the short time constant |
L, Grant and Best' i i proposed a model for the response of the

displacement of the otoconial layer in responseto astep  otolith afferent dynamics:
change in linear velocity. The acceleration for a linear

velocity step U is a, = -Ud(t), with g, = 0, where AFR(s) _ Bs+(B +C)A
o(t) is the unit impulse function. The transient f(s) s+ A
response to Eqgn. (7) isthen

(10)

(11)

This model assumes that higher centers process the

/ t/ afferent response optimally to estimate the perceived
=ul1-2 |r,e/" 72 ) . :
X(t) specific force f as shown below.
e
By assuming that the short exponential term in Eqgn. (8) f(s) AFR(s f(s)
has reached zero and the long exponential term remains | Bs+ (B+C)A (s) H(s) —»
close to unity, the maximum displacement of the s+ A
otoconial layer xma Can be approximated as
0 Combined
x, OUll- =, 9) Mechanical and Processing by
Po Afferent Otolith Higher Centers
Dynamics
The theoretical continuum mechanics analysis : ; i< then
performed by Grant and Best first indicated 1tn| a F S determined by solving the associated WieneriHopf

short time constagt 7 7SO UUL SECONds or tes$ - T1ey
later demonstratel-the

large when reasonable values of the maximum otolith

displacement are considered. For g, = 2.0 and U = 25 H(s) = M s+A (12)
cm/sec (a reasonable value for normal head velocity), (s + F)(s + G)

Eqgn. (9) becomes X = 12.57,. For 7, = 0.002 sec, the

results in X = 250 pm. It is assumed that for shear  jndependent variables that include the parameters A, B,
deformation the maximum displacement should not  and Cin Eqn. (11). With the form of H(s) determined, it

exceed the thickness of the otoconial layer (25 um),  can then be cascaded with the otolith and afferent
indicating the short time constant should be one order  dynamics to estimate the perceptual response:

of magnitude smaller, i.e. b =0.0002 s. Thisindicates

equation, yielding a solution of the form

that more damping is needed in the lumped parameter (B + C) A

model. Grant and Best later show that additional - (s+j

damping can be introduced by inclusion of a Al = BM B (13)
f (s+F)(s+G)

viscoelastic  gel atlnoss—layer—m—dne—eaqunuuT
mechanics model

which is equivalent to Eqgn. (2).
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OrmsbyElnoted that Fernandez, Goldberg, and
Abend found an average steady-state change in afferent
firing rate from the utricle due to a 1 g step to be 45
impul ses per second (ips), resulting in the condition that
B + C = 45. Setting Egn. (13) egua to Egn. (2) and
including this constraint results in the following model
for the afferent dynamic response:

s+0.1
s+0.2

AFR(S) _ %
f(s)

(14)
This transfer function, when rearranged in terms of its

time constants, becomes

AFR(S) 10s+1
=45
f(s) 5s+1

(15)

Ormsbyzlnoted the following about the model:

“ The approach taken here can yield a model which
accounts reasonably well for the available subjective
data, the known physiological structure of the sensor
and makes reasonable predictions concerning the
afferent processes and the associated central
processing.”

Experimental M odels of Afferent Dynamics

Fernandez and Goldberg studied the discharge of
peripheral otolith neurons in response to sinusoida
force variations in the squirrel monkey. Both regular
and irregular units were measured, with a frequency
analysis performed for each type of unit. The gain
curves for the regular units were relatively flat, with a
small phase lead at low frequencies and a larger phase
lag at high freguencies. The irregular units showed a
larger gain enhancement and phase lead at high
frequencies. On average, there is an increase by a
factor of 18 in gain enhancement in irregular units but
only an increase of a factor of 2 for regular units. In
both cases, a first-order lead operator cannot represent
the resulting gain enhancement and phase lead. The
average static sensitivity for both types of units is
nearly identical, with reduced gains for the inhibitory
response.

The frequency responses of regular and irregular units
result in atransfer function of the form

5

AFR(S) _ . 1+kuus 1tk (z,5)"
f(s) S 1+r,s  1+1,s
H, (s)
=Gg H
S A( )HM (S)

(16)

In Egn. (16), the term H, is a velocity-sensitive
operator with a fractional exponent (k, < 1) and
provides most of the gain enhancement and phase lead
found in both regular and irregular units. The value of
k, reflects the effectiveness of the lead operator and is
closely related to the slope of the gain curve. The term
Ha is an adaptation operator that contributes to low
frequency phase leads and gain increases from static or
zero frequency to 0.006 Hz. The term Hy is a fifst-
order lag operator that Fernandez and Goldberg™Tiote
may reflect the mechanics of otolith motion. This lag
term accounts for the high frequency phase lags
observed in regular units and for high frequency phase
leads in irregular units being smaller than would be
predicted solely by a fractional lead operator. The term
Gs defines the static sensitivity in terms of afferent
firing rate per unit of acceleration, i.e. ips/g.

The transfer function was estimated from a
least square computer fit with 7, varied from O to 320
seconds in seven steps, with the remaining parameters
estimated. The values for these parameters were
obtained for 7, = 40 seconds (almost equal results were
obtained for all values of 7,). The median parameters
for both regular and irregular units for the excitatory
response are givenin Table 1.

Tabla 1. Median Parameters for Regular and Irregular
Units".

Parameter Regular Unit Irregular Unit
ky 0.188 0.440

Ka 1.12 1.90

Ta 69 sec 101 sec

v 16 msec 9 msec

Gpc 25.6ips/ g 20.5ips/ g

Proposed Afferent Dynamics M odel

Note that the gain terms for the Fernandez-

Goldberg model from Table 1 ar;

the gain value used by Ormsby
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Due to the adaptation mechanism in the Fernandez-
Goldberg models, these gains will require a long
duration_step input to be redized in steady state.
Hosm ggested a gain term of less magnitude than
that used by Ormsby (Gpc = 33.3) that may provide an
improved approximation to the Fernandez-Goldberg
responses.

By using the long and lead time constants reported
by Ormsby™—n Eqgn. (15), selecting the short time
congtant from the Fernandez- Goldberg‘4 model, and
including the gain suggested by Hosman, the following

transfer function results for the afferent otolith
dynamics:
AFR(s 10s+1
S =333 ( ) (17)
f(s) (5s +1)(0.016s +1)

The frequency response of the proposed model in
Egn. (17) is compared to the frequency response of the
Young-Meiry model of Eqgn. (3) as shown in Figure 4.
For comparison in Figure 4, both models use the gain K
= 0.4 from the Y oung-Meiry model. Note that the gain
and phase lag for the Young-Meiry model occurs at a
much lower frequency as compared to the proposed
model. This is due to the magnitude of the short time
congtant 7, for the Young-Meiry model being an order
of magnitude larger than the value used in the proposed
model. In the range of norma head movements from
0.1 to 1.0 Hz noted by Young1I the gain for the
proposed model remains constant with the phase close
to zero degrees. In this frequency range the otolith
functions as a specific force transducer.

Frequency Response of Otolith Models
T
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Figure 4. Frequency Response of Proposed and
Y oung-Meiry Sensation Models.
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Fractional Exponent Derivation

Because of the fractional exponent in the transfer
function of Egn. (16), an elementary solution to its
response cannot be readily obtained. However, an
approximate solution to the response can erived
through the application of fractional calculu

By first subgtituting the regular unit parameters
into Egn. (16) and then implementing partial fraction
expansion, Egn. (16) becomes

1792.056 M1
H(s) =———— +674.058——
S+ 625 S+62.5
0.188 (18)
0.044538 '
-——— -0016752———
s+0.0145 s +0.0145

In Egn. (18) there are two groups of two transfer
functions. Each group is related to either the otolith
mechanics (“fast”) time constant 7 or the adaptation
(“slow”) time constant 7, with one of the two transfer
functions including an exponent that represents a
fractional derivative. For the first group, the solution to
the term without the fractional exponent can be easily
obtained by taking the inverse Laplace transformation
of the response;

- 1 -
L = o028t
S+ 62.5

To derive a solution to the fractional exponent term,

(19)

The inverse Laplace transforgdation 1S Tirst obtained Dy

applying fractional calculus:

(=)
S—a

where a = -625, v =
E (v,a)=t"e"y (v at),

(20)

-0.188, and the term
with _y  being _the

a transcendental function

incomplete gamma function”

that can be expressed as

k

atz

vat
el v+k+1)

(21)
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Substituting Eqgn. (21) into Egn. (20) will resultin
L* S
S—a

Egn. (22) isan infinite series. For v =0, Egn. (22) will
reduce to the Taylor series expansion of the exponential
function:

Va)-ti (at)

o M (v+k+1)

(22)

(23)

When v is not equal to zero, E (v,a) is a

transcendental function that cannot be expressed by an
elementary function, i.e. it can only be approximated.
However, Eqgn. (22) is not suitable for numeric
computation because this series converges very slowly,
especially when the magnitude of a islarge (e.g. -62.5).
The following derivation will result in an integral
expression of the infinite series that can be adopted to

compute E, (v, a). Ifwelet f(t) =E, (v, a), then

_12”: (at)"

F =

(24)

where f (t) satisfies the first-order ordinary differential
equation

£'(t)-af (t) =t"*/r(v) (25)
with the solution
f eatJ' —auuv ldu
= , = 0 , >1
(=82 ==
(26)

Note that in Egn. (26) the integral doeﬁ not exist
when v-1islessthan 0. T -
we use the recursion formula®

r(v+1)
tv at|/+l azeat

TTeD Twed) Tegs VT2

E (va) =t +aE, (v +1,a)

_ tv . atwl . aZeal jte—auuv+ldu
Fv+1) r(v+2) r(v+2)h

Note that the integral in Egn. (27) now exists since
v + 1isgreater than 0. Egn. (27) can now be used to
compute the responses of the two fractional exponent
transfer functions given in Eqgn. (18). For each of these
transfer functions, three terms are computed. The first
two terms are analytical functions, and the third
includes an integral that requires an approximate
solution. By using a series approximation, the integral
I(t) in Egn. (27) can be evaluated as

| (t) =t""%e™ {jzi;cj [t (2-1) 0z + O{—(—atl)NﬂJ}

(28)

where the constant C; isequal to 1 for j = 0, (v +1) for
j=1and (v +1v/2! forj =2. By taking the inverse
Laplace transformation of Eqgn. (18) and applying Eqgns.

(27) and (28) to the transfer functions with fractional
exponents results in the impul se response h(t):

h(t) =1792.056e*** - 0.044538¢ ***
+674.058 E, (-0.188, ~62.5) (29)
- 0.016752 E, (-0.188, —0.0145)

The response to a step input will now be

considered. Given a system with the initial conditions
x=0 and %=0 whent = 0, and an arbitrary input

u(t), we look for a solution in the form

t)j

where h(x,7) is Green's function, i.e. the system
response t0 an inppulse input. If we consider the

u(r)dr (30)

(27)

7

response 10 a unit step, i.e. u(r)=1 for t > 0, the
response for aterm without the fractional exponent is
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[ledr= 1 (e* -1) (31)

state response significantly increases due to the fast
lead term, with a smaller but additional effect due to the
slow lead term.

while the response for a term with the fractiona
exponent from Eqgn. (29) is given by Miller and ROSE

Flgure b snows the response Tor the Irregular units

as

[E (v.a)dr=E (v +1a) (32)

and applying the recursion formulain Eqgn. (27) gives

a

E (v+1a) =1[E[ (v, a) —ﬁ} (33)

Applying Egns. (31) and (33) to the impulse response
given in Egn. (29) and combining terms results in the
regular unit response to a unit step:

X(t) = 25.601 - 28.673e%2% +3,073¢ 001445
~10.786E, (-0.188, —62.5)
+1.156E, (-0.188, -0.014493)

+o620 U
r (u + 1)

(34)

Similarly, the unit step response for the irregular unit
can be derived:

X(t) = 20.308 —35.588e 111111 +18,280e 0000
~86.063E, (-0.44, -111.1111)

+40,769E, (~0.44, ~0.009901)
+a5204 Y
r (v + 1)
(39)

Comparisons of M odel Responses

The response to a step input of 1 g (9.81 m/s?) will
now be examined for both the regular and irregular
units. A series approximation of N = 2 will be used,
and the responses will be evaluated at intervals of 0.025
seconds. The effect of the two fractional exponent lead
terms from the otolith mechanics (“fast”) and
adaptation (“slow”) time constants will be illustrated.
Figure 5 shows the response for the regular units for 1
second. Note that the rise time is faster and the steady

for—t—second—Notethatbothteadtermsheveamore
significant effect on the response as compared to their
effect on regular unit response. Thisis primarily due to
the larger fractional exponent k,, and also due to the
larger time constant 7, and coefficient ky in the
adaptation operator. The rise time is significantly
faster, with the response rapidly increasing to a peak
overshoot over five times the value without the fast lead
term. Theinclusion of the fast lead term also resultsin
the steady state response being nearly doubled. The
addition of the slow lead term results in the overshoot
increasing by an additional 50 per cent with additional
steady state response.

Otolith Regular Unit Model Response to Step Input

N T T

450 - —r—-—-t+—-—t——+1 O TFwithfastlead =
ith fast & slow lead

ZOOUrTDDNm A TI0—

Time (sec)

Figure 5. Regular Unit Response to Step Input.

Otolith Irregular Unit Model Response to Step Input

I I I I L L L
— TF w/o lead
O TF with fast lead
+ TF with fast & slow lead | |

30 |- - ——F-—t——L——o

TOVTDIUXD ST~

Time (sec)

Figure6. Irregular Unit Responseto Step Input.
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Figure 7 compares the step response for both the
regular and irregular units (including both the fast and
dow lead terms) to the response for the proposed model
given in Egn. (17). Note that the rise time for the
proposed model is faster than the regular unit, but
dower than the irregular unit. There is no large
overshoot as observed with the irregular unit response.
Figure 8 compares the responses for 30 seconds. Note
that the steady state response for the proposed model is
less than the irregular unit response but greater than the
regular unit response, and approaches the regular unit
response for the given time duration. Both the regular
and irregular unit response will slowly approach their
respective gain values, and beyond about 80 seconds
the irregular unit response will decrease below that of
the proposed model.

Comparison of Otolith Models Response to Step Input

‘ ‘ T T T T

—— Proposed Model
O F&G Regular Unit

400

Kt e H i i il i + F&G Irregular Unit |~ ~

Time (sec)

Figure 7. Proposed Model Response to Step Input for 1
second.

Comparison of Otolith Models Response to Step Input
150
I

T T
—— Proposed Model
O F&G Regular Unit
+ F&G Irregular Unit
T T

TOVTDIUXD ST~

Time (sec)

Figure 8. Proposed Model Response to Step Input for
30 seconds.
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Physiological Interpretation

Modern theories of the operation of the otolith
receptors are based on the assumption that the neural
impulses are generated by the deflection of hairsin the
sensory cells as a result of the otolith displacement.
Specific force, produced by either linear acceleration or
tilt, is first transformed into electrical impulses by the
otolith-endolymph system. Then the otolith deflection
is further transformed into electrical impulses by the
mechano-neural transduction system consisting of
sensory hair cells, afferent nerves, and efferent nerves.

Many researchers have shown that the otolith-
endolymph system could be represented by an
overd i -

Best! Inr’rpd that the magnitl ide of the Inng time

constant 7; is considered correct by most investigators
because the overal system (otolith organ, nervous
transmission, central nervous system processing, and
eye motion dynamics) could easily
system. The value Grant and Best™
time constant 7, is a three order of magnitude decrease
in time constant as compared to the value obtained from
the ocular torsion responses measured by Young and
Meirys.lThis value is also two orders of magpHude less
than the value of 7 Fernandez and Goldberg™ attribute
to the otolith dynamics. The dynamic response
increases as the system transducer (otolith) is
approached, thus allowing for dynamic losses in
nervous system transmission and eye dynamics.

Y oung and Meir)};| first noted that the origin of the
lead term could be neurological, either in central
processing of the otolith displacement signals or
through the presence of two types of hair cells in the
macula.  One type of har cell would respond to
displacement and the other would respond to the rate of
change of otalith displacement. These hair cells could
produce the lead term if they were of the dowly
adapting type postulat by severa researchers.
Fernandez and Goldberg™ later show that the degree of
sengitivity to the otolith velocity can be represented by
different fractional exponents in the lead operator, i.e.
irregular units are more velocity sensitive than regular
units. They note that this difference in sensitivity may
be due to discrepancies that are more noticeable with
irregular units.

Fernandez and Goldber suggest that the
difference between the expected otolith displacement
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and afferent firing rate for both regular and irregular
units may be attributed to the mechanical linkages
between the sensory hair bundles and the gelatinous
layer. They report that these sensory hair bundles are
not rigidly embedded in the membrane, but are
enclosed in a fluid-filled meshwork between the
membrane and the sensory epithelium. Motion could
be transferred to the hairs either by directly contacting
the meshwork or indirect contact by viscous coupling
with the fluid. They also note that the irregular units
correspond to thick afferents that stimulat
hair cells in the striola. Grant and Best
that for large tilt the gelatinous layer has a nonlinear
stiffness that could also contribute to these differences
aswell.

Fernandez and Goldberg" suggest that later stages
of the transduction process may aso influence the
afferent dynamics, in particular adaptation, noting the
following:

“Lowenstein found, in the ray, that afferents can
show adaptation when galvanic currents are applied.
We have made similar observations in the squirrel
monkey (unpublished observations) and have noted a
correlation between the degree of adaptation shown by
a particular afferent in its response to natural and
electrical stimulation”

They note that these results show that a detailed
comparison of the response to galvanic and natural
stimulation may help in assessing the contributions
made by the various transduction stages in the filtering
process between the motion of the otolith and the

discharge of the afferent.

Conclusions

A mathematical model of the otolith organs based
on both analyticah modeling and physiological
experiments is proposed. This model consists of a
second-order mass-spring-dashpot operator cascaded
with a first-order lead operator. The mass-spring-
dashpot operator represents the mechanics of otolith
motion. The lead operator arises from the mechano-
neural transduction system that in turn generates the
afferent response.

The physiological experiments resulted in transfer
functions for both regular and irregular units with a
fractional exponent in the lead operator. This term

reflects the sensitivity of hair cells to the rate of change
of otolith displacement. By applying fractiona
calculus, transient responses to impulse and step inputs
have been derived for both regular and irregular unit
models. The solutions to these responses are both
mathematically and  computationally intensive,
requiring several terms aong with a series
approximation of an integral for each of two lead
components to compute the response at each time step.

beded to yield
addition to the
It is also suggested that a

|mpulse and step inputs.
model could be developed that incorporates the
dynamics of the fractional exponent lead operator from

both the regular and irregular unit models. Such a
model must be easy to implement in state space in a
motion cueing agorithm and be computationally
efficient so that the afferent response can be computed
inreal time.

Comparison of the transient response of the
proposed model with the responses of the regular and
irregular units clearly shows that a less complex model
can generate a response that is a reasonable
approximation between the regular and irregular units.
This model has the same structure as the Meiry-Y oung
model that is currently used in the development of the
optimal algorlthmI and can easily replace the former
model. This revised otolith model will aso be an
integral part of a proposed motion cueing algorithm that
incorporates human perception of motion into a non-
linear optimal control structure.
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